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ABSTRACT

An investigation was conducted in the Aerodynamic Wind Tunnel (4T) to obtain
the static stability characteristics of a bluff body shape with various afterbody-stabilizer
configurations. Data are presented for a Mach number range from 0.6 to 1.3 over an
angle-of-attack range from -2 to 28 deg. For all configurations tested, it was found that
the static margin was greatest for the configurations having the largest span swept and
unswept blade-type fins.

Distribution limited to U.S. Government agencies only;
this report contains information on test and evaluation of
military hardware; May 1972; other requests for this
document must be referred to Air Force Armament
Laboratory (DLGC), Eglin AFB, FL 32542,
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NOMENCLATURE
Ap Model base area, ft2
b .- Fin span, ft
Ca Axial-force coefficient, measured axial force/q.S

Cap Base axial-force coefficient, (p.. - Py )Ap/qu.S

Ce Rolling-moment coefficient, rolling moment/q_SD

Cnm Pitching-moment coefficient, pitching moment/q,.SD (moment reference point
is 3.00 in. aft of model nose)

Cn Normal-force coefficient, normal force/q.S

Ca . Yawing-moment coefficient, yawing moment/q,SD
Cy Side-force coefficient, side force/q..S

D Model body diameter, 0.1000 ft

M, Free-stream Mach number

Pb Average static pressure at model base, psfa

P. Free-stream static pressure, psfa

q_ Free-stream dynamic pressure, psf

Re Reynolds number based on D

S Reference area, 0.0079 ft2

Xep Center-of-pressure location, C,,/Cyn (body diameters from moment reference

point, positive when forward of moment reference)

Xap Neutral-point location, (dCy, /dCy )a=0 (body diameters from moment reference
point, positive when forward of moment reference)

vi
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SECTION |
INTRODUCTION

A wind tunnel investigation was conducted in the Aerodynamic Wind Tunnel (4T)
to provide static stability characteristics of a bluff body shape with various
afterbody-stabilizer configurations. This test is one of a series of tests that have been
conducted at AEDC under the Modular Weapon Systems program (Refs. 1, 2, and 3).
Tests were conducted for 17 afterbody-stabilizer configurations at Mach numbers from
0.6 to 1.3 for an angle-of-attack range from -2 to 28 deg. The purpose of this report
is to document the test and to present the data for all configurations tested.

SECTION 1l
APPARATUS

2.1 TEST FACILITY

Tunnel 4T is a closed-loop, continuous flow, variable density tunnel in which the
Mach number can be varied from 0.1 to 1.3. At all Mach numbers, the stagnation pressure
can be varied from 300 to 3700 psfa. The test section is 4 ft square and 12.5 ft long
with perforated, variable porosity (0.5- to 10-percent open) walls. It is completely enclosed
in a plenum chamber from which the air can be evacuated, allowing part of the tunnel
airflow to be removed through the perforated walls of the test section. A more thorough
description of the tunnel may be found in Ref. 4.

The model support system consists of a pitch sector, boom, and sting which provide
a pitch capability from -12 to 28 deg with respect to the tunnel centerline. The center
of rotation is at station 108. In addition, a remote-controlled roll mechanism allows roll
angle variations of 180 deg. A schematic of the test section showing the location of
the test model is shown ih Fig. 1 (Appendix). A photograph of the model installation
is shown in Fig. 2.

2.2 TEST ARTICLES

All of the model configurations have a body maximum diameter of 0.100 ft and
a length of 6.83 cal (0.683 ft), with the exception of configuration NIOM5A17, which
has a length of 7 cal (0.700 ft). Also, all model configurations consist of three components
that are shown in Figs. 3 and 4 and which include the afterbody-stabilizer component,
the afterbody component, and the nose component. The afterbody-stabilizer component
has 17 configurations that are identified in Figs. 3a and 4a. The afterbody-stabilizer
configurations have various fin-span-to-body diameter ratios, b/D, that vary from 1.00 to
4.00 cal. The fins of the afterbody-stabilizer configurations with four fins are oriented
145 deg relative to the pitch plane of the model. The fins of the afterbody-stabilizer
configurations with eight fins are symmetrically oriented about the vertical plane such
that two fins are located on the top and the bottom of the model. Also, certain
afterbody-stabilizer configurations have a 1.00-cal length and the others have a 1.83-cal
length. There are two midsection configurations, M4 and M5, which utilize the centerbodies
shown in Figs. 3b and 4b. For the M4 configuration, a 4.00-cal length centerbody is
used with the 1.83-cal afterbody-stabilizer configurations and a 4.83-cal centerbody is used
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with the 1.00-cal afterbody-stabilizer configurations. A 5.00-cal centerbody is used for
the M5 configuration. Also shown in Figs. 3b and 4b is the only nose configuration tested
(N10) which is a 1.00-cal-length hemisphere-cylinder shape.

23 INSTRUMENTATION

In order to accommodate various model base internal diameters and model loads,
two different six-component, internal, strain-gage balances were used to measure the overall
aerodynamic loads on the model. The largest diameter balance, 0.75 in., was used with
the Al, A6, Al7, Al18, A23, and A24 afterbody-stabilizer configurations, and the
0.40-in.-diam balance was used with the Al19, A20, A21, and A22 afterbody-stabilizer
configurations. The balance outputs were recorded on an oscillograph for monitoring of
model dynamics.

Static pressures on the model base were measured with differential pressure
transducers. The base pressure was defined as the average of two pressures measured near
the model base at two points located 180 deg apart on the sting.

The model angle of attack was measured with the pitch sector angle-of-attack
indicator. These measurements were corrected for support system and balance deflections,
resulting from aerodynamic forces and moments, to obtain true model orientation. These
measurements were not corrected for any possible flow angularity. Electrical signals from
the balances, pressure transducers, and standard tunnel instrumentation systems were
processed by the PWT data acquisition system and digital computer for on-line data
reduction.

SECTION 111
TEST PROCEDURES

3.1 TEST DESCRIPTION

Steady-state force and moment data were obtained in Tunnel 4T at Mach numbers
from 0.6 to 1.3. For all data presented the total pressure. was held constant at
approximately 2050 psfa with an approximate 100 psf tolerance, and the nominal variation
of Reynolds number and dynamic pressure with Mach number is shown in Fig. §. Also,
for all data presented the tunnel total temperature was held above 100°F. Tunnel conditions
were held constant at each Mach number while pitch angle varied, and data were recorded
at each selected angle. The pitch range was from -2 to 28 deg. The models were tested
with free transition throughout the test program.

3.2 PRECISION OF MEASUREMENTS

The estimated uncertainties associated with tunnel conditions and measured
coefficients are as follows:
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M. = 0.6 M. =038 M. =10 M, =12 M.=13

AM, +0.0021 1+0.0023 +0.0039 - £0.0095 1$0.0144
Aq, +2.2 £2.2 2.6 3.1 %45
ACpp 0010 10.007 +0.008 $0.015 +0.020

0.75-in.-diam balance

. ACy £0.032 +£0.022 +0.024 +0.026 +0.018

ACy 10.026 £0.017 +0.013 $0.012 £0.012
AC,, +0.084 +0.056 +0.054 £0.050 +0.042
ACy +0.015 +0.009 +0.006 10.005 0.005
AC, £0.058 +0.039 +0.030 +0.026 +0.026
ACy £0.006 +0.004 +0.003 +£0.003 +0.003

0.40-in.-diam balance

ACy +0.028 +0.019 +0.019 *0.015 +0.013
ACy +0.074 +0.050 +0.040 +0.035 +0.034
ACp, +0.051 +0.034 +0.026 +£0.023 £0.022
ACy +0.012 +0.009 +£0.005 +0.004 +0.004
AC, +0.023 £0.016 +0.010 +£0.009 +0.009
ACp +0.011 +£0.007 £0.006 +0.005 +0.005

The uncertainty quoted for Mach number relates to the variation of Mach number in
the vicinity of the test article. The uncertainty for setting and maintaining Mach number
during a pitch polar is approximately +0.005 for all Mach numbers. The uncertainty in
angle-of-attack measurements is 0.1 deg. The estimated uncertainties in force and moment
coefficients are based on 95-percent probability and include possible errors in balance
calibration curve fits, and in the case of moment coefficients, transfer of force uncertainties
from the balance force system center to the moment reference point (MRP) of the model.

SECTION 1V
RESULTS AND DISCUSSION

* The measured force and moment data presented have been reduced to coefficient
form in the body axes system. The moment reference point (MRP) is located on the
centerline 2.5 cal from the model nose. The variations of Cy, Xcp, Ca, Ca b, Cy, Gy,
and Cg@ with a are presented in Figs. 6 through 11 for each model configuration tested.
Also, all C, , for all model configurations presented in this report are calculated for
the values of A, shown in Fig. 4.

A comparison of the aerodynamic characteristics of -the configurations with drag
plates, NIOM4A19 and N10M4A20, is presented in Fig. 6. In general, both configurations
produce similar variations in normal-force coefficients for all Mach numbers and angles
of attack except for a > 20 deg and M_ = 0.6 and 0.8, where the configuration N10M4A20
produces less normal force (Fig. 6a). Figure 6b indicates that the static margin of both
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configurations is greatest at M, < 1.0 and that the stability of both configurations is
reduced for M, 2 1.0 with the neutral-point and the center-of-pressure locations moving
near or forward of the MRP. The axial-force coefficients are similar for both drag plate
configurations with configuration N10M4A20 generally producing the larger values (Fig.
6c¢). Below a = 15 deg there is no significant side-force coefficient produced by either
configuration (Fig. 6e), but for @ > 16 deg and particularly for M, = 0.6 and 0.8 there
is a very significant side-force coefficient for both configurations that is apparently
attributable to an unsymmetrical arrangement of vortices trailing from the model. Also
for a > 16 deg the yawing-moment coefficients are significantly affected (Fig. 6f) with
the rolling-moment coefficients showing some effect (Fig. 6g).

A comparison for the bomb configurations with different span star fins (N10M4A2],
b/D = 1.00 and 1.10) and configuration N10M4A22 is presented in Fig. 7. For all Mach
numbers and angles of attack presented the larger span star fin produces the largest
normal-force coefficients, the largest static margin, and, generally, slightly larger axial-force
coefficients for the configurations compared (Figs. 7a, b, and c). Figure 7b shows that
both spans of the star fins produce neutral-point and center-of-pressure locations that
remain aft of the MRP for all Mach numbers and angles of attack. Also, Fig. 7b shows
that configuration N1OM4A22 is unstable except for high angles of attack with the
neutral-point location and the center-of-pressure location for low angles of attack well
forward of the MRP at all Mach numbers. The apparent unsymmetrical trailing vortex
effect is shown in Fig. 7e for a > 15 deg where there is a large and erratic side force
for all configurations, particularly at Mach numbers from 0.6 through 1.0. Also, both
the yawing-moment coefficient and rolling-moment coefficient are noticeably affected
(Figs. 7f and g). '

The effects of span on configuration N10M4A18 (Fig. 8), configuration N10M4A23
(Fig. 9), and configuration N10M4A24 (Fig. 10) are generally similar and . these
configurations are discussed as a single group. All configurations have tapered afterbodies
and the blade-type fins. The A18 configurations have swept fins, but configurations A23
and A24 have unswept fins. For all Mach numbers and angles of attack presented, increasing
the fin span increases the normal-force coefficient (Figs. 8a, 9a, and 10a), the static margin
(Figs. 8b, 9b, and 10b); and the axial-force coefficient (Figs. 8c, 9c, and 10c). The erratic
behavior of X.,, at small a for configuration N10M4A24, b/D = 4.00 (Fig. 10b) is attributed
to bending of the fins. A significant permanent set in these fins was produced by
aerodynamic loads during testing. Figures 8b, 9b, and 10b show that all neutral-point
locations and, with the noted exception, all center-of-pressure locations are well aft of
the MRP and generally the X., moves forward with increasing angle of attack. The fins
of the largest span (b/D = 3.46) of configuration N10M4A18 were also observed to have
been slightly bent after being tested, and the side force at @ = 0 deg shown in Fig. 8e
is the apparent result. Also the significantly bent fins of the largest span (b/D = 4.00)
of configuration N10M4A24 produce a side force at @ = 0 deg (Fig. 10e). With the
exception of configuration N10M4A18, b/D = 2.88, there is a very large side force for
a > 16 deg at M,, = 0.6 and 0.8, and this is again attributable to the unsymmetrical
trailing vortices (Figs. 8e, 9e, and 10e). The trends in side force at high a are generally
also reflected in the yawing-moment and rolling-moment coefficients.
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A comparison for two finned configurations (N10M4A1 and N1IOM4A6) and a finless
configuration N1OM5A17 is presented in Fig. 11. As expected configuration N1IOM5A17
produces less normal-force coefficient (Fig. 11a) and is less stable than either finned
configuration (Fig. 11b). Also configuration N10M4A1l produces more normal force and
static margin than configuration N10M4A6 (Figs. 11a and b). In general the variations
in axial-force coefficients (Fig. 11c) are similar for all configurations, and a measurable
increase in axial force is produced by the fins. Figures lle, f, and g show that for a
> 15 deg at M., = 0.6 and 0.8, significant side force, yawing moment, and rolling moment
are .evident for configurations N1IOM4A1 and N10M4A6, but not for NIOM5A17. This
suggests that an interaction between the previously mentioned vortices and the fins is
responsible.
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CONFIGURATION b/D
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